According to the analysis of related databases, 71294-03-6, the application of this compound in the production field has become more and more popular.
In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 71294-03-6 as follows. 71294-03-6
Example 9 Preparation of 3-(4,6-diethoxy-1,3,5-triazin-2-yl)-7-fluoro-1,3-dihydro-2H-indol-2-one 7-Fluoro-1,3-dihydro-2H-indol-2-one (1.0 g) is introduced as initial charge in 10 ml of N,N-dimethylacetamide. A solution of potassium carbonate (1.8 g) and potassium hydroxide (0.3 g) in 10 ml of water is added and the mixture is briefly after-stirred. Then, a solution of 2-chloro-4,6-diethoxy-1,3,5-triazine (3.0 g, ca. 50% purity) in 10 ml of N,N-dimethylacetamide, and 10 ml of water are added. A solid separates out from the clear yellow solution. The mixture is stirred at room temperature and further 2-chloro-4,6-diethoxy-1,3,5-triazine (1 g, ca. 50% purity) is added in two portions after 2 and 18 hours. The mixture is stirred for a further 3 hours at 30 C., admixed with 10 ml of toluene, adjusted to pH 1-2 with hydrochloric acid (10%) and after-stirred for 30 min. The solid is filtered off with suction, washed twice alternately with water and heptane and dried. This gives the title compound as solid in an HPLC purity of 99% area (1.53 g, 72% of theory). LC-MS: M+H=319 (86%). 1H NMR (400 MHz, DMSO-D6): delta (ppm)=11.3 (s, 1H), 7.59 (d, 1H), 6.96 (dd, 1H), 6.93-7.00 (m, 1H), 4.50 (q, 4H), 1.37 (t, 6H).
According to the analysis of related databases, 71294-03-6, the application of this compound in the production field has become more and more popular.
Reference:
Patent; BAYER INTELLECTUAL PROPERTY GMBH; Karig, Gunter; Ford, Mark James; Siegel, Konrad; US2013/345422; (2013); A1;,
Indoline – Wikipedia,
Indoline | C8H9N – PubChem