These common heterocyclic compound, 32692-19-6, name is 5-Nitroindoline, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Safety of 5-Nitroindoline
Manufacturing Example 1 tert-Butyl 5-nitro-1-indolinecarboxylate To a solution of 500mg (3.05mmol) of 5-nitroindoline in 10mL of anhydrous dichloromethane was added 798mg (3.65mmol) of di-tert-butyl dicarbonate under ice cooling, and the mixture was stirred for 1.5 hours. Then, to this mixture was added catalytic amount of 4-dimethylamiopyridine and the mixture was stirred for 1 hour at room temperature. Water was added to the reaction mixture and the mixture was extracted with dichloromethane. The organic layer was washed with saturated saline solution and dried over with anhydrous sodium sulfate. The solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate = 6/1) to give 800mg (99%) of the title compound.
The synthetic route of 5-Nitroindoline has been constantly updated, and we look forward to future research findings.
Reference:
Patent; Daiichi Asubio Pharma Co., Ltd.; EP1775298; (2007); A1;,
Indoline – Wikipedia,
Indoline | C8H9N – PubChem